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Abstract: 

Very often the data collected by social scientists involve dependent observations, 

without, however, the investigators having any substantive interest in the nature of 

the dependencies. Although these dependencies are not important for the answers to 

the research questions concerned, they must still be taken into account in the 

analysis. Standard statistical estimation and testing procedures assume independent 

and identically distributed observations, and need to be modified for observations 

that are clustered in some way. Marginal models provide the tools to deal with these 

dependencies without having to make restrictive assumptions about their nature. In 

this paper, recent developments in the (maximum likelihood) estimation and testing 

of marginal models for categorical data will be explained, including marginal models 

with latent variables. The differences and commonalities with other ways of dealing 

with these nuisance dependencies will be discussed, especially with GEE and also 

briefly with (hierarchical) random coefficient models. The usefulness of marginal 

modeling will be illuminated by showing several common types of research questions 

and designs for which marginal models may provide the answers, along with two 

extensive real world examples. Finally, a brief evaluation will be given, shortcomings 

and strong points, computer programs and future work to be done. 
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1. INTRODUCTION 

In social science research many interesting substantive theories and hypotheses are 
investigated by comparing different marginal distributions defined for an appropriate 
selection of variables rather than by looking at the properties of the total joint distribution 
for all variables involved in the data collection procedure. Studying agreement or differences 
among various marginal distributions is almost always based on tables that are not obtained 
from independent samples of respondents, but are derived from the same overall sample. 
As a consequence these tables may show varying degrees of dependency which has to be 
taken into account in the statistical analysis. In their book Bergsma, Croon, and Hagenaars 
(2009) described a maximum likelihood (ML) approach for testing hypotheses about 
marginal distributions, and estimating the relevant parameters in the corresponding models. 
In their approach the dependencies among the data are directly incorporated in the 
likelihood function itself, making any ad hoc specification of the potential dependencies in 
the data unnecessary. By applying these methods to data coming from a variety of social 
surveys, they showed how ubiquitous marginal models really are in substantive research in 
sociology. As we will frequently refer to Bergsma et al. (2009), we abbreviate this reference 
by BCH. 

The main purpose of this paper is to further propagate this new methodology among an 
audience of social science researchers. In this first section the need for marginal modeling in 
social science research is demonstrated by a simple example, and the intuitive ideas behind 
estimation and testing are given. The second section is devoted to a more formal exposition 
of the maximum likelihood procedures described in BCH. It is outlined how missing data can 
be dealt with, which was not done in BCH. In the third section, other approaches are 
described, with particular attention given to the generalized estimating equations (GEE) and 
GSK (after Grizzle, Starmer and Koch, 1969) approaches. Similarities and dissimilarities with 
maximum likelihood estimation, as well as relative advantages and disadvantages, are 
discussed. It is highlighted how questions that can best be answered using marginal models 
differ from those that can best be answered using random coefficient models. In the fourth 
section the ML approach is applied to two concrete data sets, the first of which was not 
analyzed before using marginal modeling. In the first example marginal modeling is applied 
to data collected in a rotating panel design. The analysis here is carried out on tables which 
are partly dependent. This example shows that marginal modeling methods can easily be 
extended to data from complex sampling designs. In the second example, taken from 
Bergsma et al., a classical data set (Lazarsfeld, 1972) is analyzed by means of a latent class 
model in which both loglinear and non-loglinear constraints are imposed on the cell 
probabilities. These two non-trivial examples should make clear that the ML approach in 
marginal modeling is not restricted to relatively simple research questions, but remains 
applicable in much more complex circumstances, irrespective of whether these concern the 
sampling design or the structure of the statistical model.  
 

1.1 General Characteristics 

The oldest and best known marginal model is probably the Marginal Homogeneity (MH) 

model for square tables. Many of the characteristic features and uses of marginal modeling 
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can be captured by means of the MH model and its straightforward extensions (Caussinus 

1966; Grizzle, et al 1969; Bishop et al. 1975; Haberman 1979; Duncan 1979, 1981; Haber 

1985; Hagenaars 1986, 1990). 

The data in Table 1 are from a panel study, part of the US National Election Study, in 

which the same respondents are interviewed several times. Table 1 is a turnover table that 

represents the individual gross changes in Political Orientation (measured on a seven-point 

scale) in the US. 

 

 

Table 1. Political Orientation (US national election studies) 

 

 B.t2 - 1994 

A.t1 -1992 1 2 3 4 5 6 7 Total 

1 3 4 1 2 0 1 0 11 
2 2 23 15 6 0 2 0 48 
3 1 8 23 9 9 1 0 51 
4 0 6 17 56 19 13 2 113 
5 0 1 1 18 40 29 3 92 
6 0 1 1 4 13 51 7 77 
7 0 0 0 0 2 11 3 16 

Total 6 43 58 95 83 107 16 408 

 
Source U.S. National Election Studies; see also Bergsma et al (2009) 

1. extremely liberal   2. liberal   3. slightly liberal   4. moderate 

5. slightly  conservative  6. conservative 7. extremely conservative  

 

 

The observed frequency entries      
   in Table 1 can be used to estimate the joint 

probabilities      
   in the population, or the conditional probabilities      

   
. In this way, the 

amount and nature of the individual changes can be investigated by looking at how an 

individual’s position at Time 2 depends on the scores at Time 1. However, very often the 

research questions to be answered in these studies do not concern the individual gross 

changes but rather the overall net changes. Researchers will then use a table such as Table 1 

to investigate the net changes in Political Orientation, comparing the marginal frequencies 

    
        

    and    
 (     

  ) . Typical research questions in this kind of study are: have 

people become more liberal or more conservative from Time 1 to Time 2? Or, has the 

population become less or more diverse regarding its Political Orientation from Time 1 to 

Time 2? For answering these questions, the patterns and dependencies within the turnover 

are irrelevant; only the differences between the marginal distributions provide the 

substantively relevant information. 

In Table 2, the two marginal distributions from Table 1 are put together with a third 

wave added from the same US Election Study.  
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Table 2. Marginal Distributions of Political Orientation (US national election studies). Source: 

see Table 1.  

 

 T-Time 

P-Political   
Orientation 

A.t1-1992 B.t2-1994 C.t3-1996 MH 
 

Ind. 

1 extr.lib 11 6 6  9.17  7.67 
2 48 43 36 42.52 42.33 
3 51 58 69 58.78 59.33 
4 mod. 113 95 98 103.6 102.00 
5 92 83 86 86.90 87.00 
6 77 107 98 91.83 94.00 
7 extr.cons. 16 16 15 15.21 15.67 
Total 408 408 408 408 408 
      

Marginal Homogeneity (model [T,P]): G2 = 27.66, df = 12, p = .006  (X2 = 26.11) 

(Naïve) Independence (model [T,P]):  G2 = 14.04, df = 12, p = .298  (X2 = 14.06) 

Note. Column MH contains maximum likelihood estimates of expected frequencies under marginal 

homogeneity hypothesis. Column Ind. contains expected frequencies under hypothesis of independent 

samples, i.e., the average frequency for the three time points. 

 

The hypothesis that there is no (net) change in Political Orientation is equivalent to 

the independence hypothesis for the data in Table 2. Obviously, this hypothesis also implies 

that the marginals in Table 1 are identical to each other so that there is marginal 

homogeneity in Table 1. In terms of the standard short hand notation for denoting 

hierarchical loglinear models, the independence model [T,P] should be valid for the data in 

Table 2 with T representing Time and P Political Orientation. Its loglinear representation is 

 

     
        

    
   

 

Taking the dependencies in the data into account, the test of marginal homogeneity yields 

G2 = 27.66, with df = 12, p = .006 (X2 = 26.11), i.e., there is strong evidence that the marginal 

distributions change over time. However, a different result would be obtained if the 

dependencies are not taken into account. If Table 2 had been obtained by means of 

repeated cross-sections with three independent samples, it would have been a standard 

table TP (Time x Political Orientation) containing iid (independent and identically distributed)  

observations and the independence model could be tested by means of the standard chi-

square procedures, yielding G2 = 14.04, with df = 12, p = .298 (X2 = 14.06). The conclusion 
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would be that there is no reason to reject the hypothesis that the distribution of Political 

Orientation is the same for the three time points: there is no net change. This is true 

according to the maximum likelihood chi-square G2 as well as Pearson-chi-square X2. Given 

that the three sample sizes are equal (N = 408), the maximum likelihood estimates of the 

distribution under the independence assumption would have been the mean of the three 

distributions and would look like the entries in the last Column of Table 2. 

However, Table 2 does not come from a trend (repeated cross-sectional) design but 

from a truly longitudinal (panel) study in which the same respondents are interviewed three 

times. The same respondents appear in all three distributions of Political Orientation. In 

other words, the data in Table 2 are not iid, which is a basic assumption underlying the 

standard chi-square test used above. The observations are clustered and dependent upon 

each other, as illustrated by the association patterns in Table 1. In general, such 

dependencies will seriously affect the standard errors of the estimates  ̂ of the cell 

probabilities, and accordingly the size of the test statistics. This is clearly seen from the row 

“Marginal Homogeneity” in Table 2. This row contains the chi-square statistics for testing the 

hypothesis that the three distributions are equal, but now taking the dependencies among 

the observations into account without imposing any restrictions on the dependence 

structure by using the marginal modeling maximum likelihood (ML) approach, which is more 

formally discussed in Section 2. The number of degrees of freedom does not change, but the 

values of the chi-square statistics are now much higher. Consequently, the hypothesis of 

equal distributions in the population must be rejected and the presence of net change 

should be accepted. 

In a way, such a result is not unexpected (Hagenaars 1990, p. 206). When comparing 

the t-test for the difference between two means for independent and matched samples, the 

standard errors are smaller when the correlation among the observations is positive and the 

ensuing test statistics are higher (although in terms of probability levels, this is partially 

upset by the increase in degrees of freedom for the t-test in the independent case). On the 

other hand, if the covariance between the two sets of observations is negative, the t-values 

are expected to be lower in the matched case, and if the covariance is zero, the matched and 

the independent case produce equivalent results. A similar kind of reasoning applies here. 

However, --- and that is the reason to mention it explicitly --- one cannot simply say that 

ignoring the dependencies in the data always leads to lower values of the chi-square 

statistics, not even when the dependence structure is (seemingly) positive. Obviously, if the 

association pattern (as in Table 1) happens to agree with statistical independence, the 

appropriate test taking the dependencies among the observations into account and the 

naïve test ignoring the dependencies produce the same results. However, in more 

complicated, but real world applications, BCH provide many examples in which the naïve 

test for independence yields a higher or similar G2–value than the correct test on marginal 

homogeneity despite the fact that the items all show positive associations for the two-way 

tables. 
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The Column MH in Table 2 also presents the maximum likelihood estimates for the 

distribution of Political Orientation under the assumption of marginal homogeneity while 

taking the dependencies into account. By comparing the last two columns in Table 2, it is 

immediately seen that the naïve estimates (Column Ind.) and the appropriate estimates 

(Column MH) are different. This is generally true when estimating restricted marginal models 

for categorical data. There are some known exceptions, e.g., when the dependencies among 

the observations show a symmetrical association pattern, as in the loglinear quasi-

symmetry, uniform association, or independence models. But in general, the naïve estimates 

and the appropriate ML estimates for the distribution of categorical variables will be 

different. Although ignoring the dependence structure as in the naïve estimates in Column 

Ind. generally still provides consistent estimators (see the discussion on GEE below in the 

next subsection), these naïve estimators have higher (asymptotic) standard errors than the 

maximum likelihood estimators if marginal homogeneity holds, except in special cases such 

as independence when the standard errors are the same.  

 

 

1.2 The Basic Approach 

 

Before turning to the formal exposition of marginal modeling in Section 2, it might be helpful 

at least for some readers to first get a very rough, intuitive idea of the most basic elements 

of the estimation and testing principles involved. 

The dependencies among the three distributions to be compared in Table 2 occur 

because the same individuals are involved in all three distributions. The observations over 

time are nested within individuals and the individual can be regarded as the clustering unit. 

A first requirement of the marginal estimation and testing procedure is that the clustering 

units (i.e., the individuals) are a random sample from the intended population. Confining the 

discussion to the first two time points in Table 2, Table 1 shows the dependencies among the 

observations for the (marginal) distributions of 1992 and 1994. If the individuals are indeed a 

random sample of the population and when no further restrictions are imposed on the 

entries of Table 1, the saturated model applies and the observed proportions      
    

     
      can be used as the maximum likelihood estimates  ̂    

   for the corresponding 

probability      
   in the population. A particular cell estimate  ̂    

   follows a multinomial 

distribution with estimated variance 

 

      ̂    
  (   ̂    

  )     

 

The estimated covariance between two estimated cell probabilities in Table 1, say  ̂    
   and 

 ̂    
   equals 

  ̂    
   ̂    
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Once the estimated (co)variances of the entries in the full joint table are known, it is rather 

straightforward to obtain the estimated (co)variances of (weighted) sums of cells and the chi 

square test statistics for contrasts between such sums.  

If restrictions are imposed on the marginal probabilities, e.g., marginal homogeneity, 

the appropriate maximum likelihood estimates  ̂    
   must be obtained under this restriction 

and these are then used in the way indicated above to get the estimated (co)variances of the 

estimated rather than the observed proportions. 

The restrictions may pertain to the marginal tables, but also to the dependencies in 

the joint table (Lang and Agresti 1994; Croon et al. 2000; Vermunt et al. 2001). In this way, 

one can estimate and test, for example, a model for Table 1 in which simultaneously 

marginal homogeneity is assumed for the marginals and a linear by linear (uniform) 

association for the turnover table itself. For previous work on this, see Bartolucci and Forcina 

(2002), who considered marginal models combined with RC models for the joint distribution. 

(Note that RC models for the joint distribution can be fitted using the same methodology as 

outlined in this paper, although some extra work is required because the likelihood needs to 

be reparameterized in terms of the RC model parameters. Unlike the linear by linear 

association model, the RC model is not in the natural exponential family, making the 

computations required for this reparameterization a bit more involved, see Bartolucci and 

Forcina for details.)  

Interest need not be confined to comparing entire marginal distributions, but may be 

extended to functions of cell probabilities defined on such marginals. For example, in Table 

1, one might be interested in comparing the sum of all frequencies above the main diagonal, 

(i.e. all cells indicating a tendency to be more conservative at Time 2 than at Time 1) with the 

sum of all cells below the main diagonal (indicating the tendency towards more liberalism). 

Or, one might investigate whether the significant net change in marginal distributions in 

Table 1 has to do with a net change in the intensity of the orientation (extreme to moderate) 

or with the shift in direction (liberal-conservative), each time summing the appropriate but 

different sets of cells. (The answer is that both tendencies are involved, see BCH, p. 106.) 

Alternatively, one might investigate whether the mean Political Orientation at Time 1 is 

different from the corresponding mean at time 2, or whether the variance or dispersion at 

Time 1 is different from the variation at Time 2. 

Such functions of marginal probabilities are the more interesting if the marginal 

tables concern two or more variables. For example, assume that in a panel study next to the 

repeated measurements of Political Orientation (P), also Religiosity (R) is measured several 

times, along with Gender (G). This gives rise to a table GR1P1R2P2 (for two points in time). 

Research questions that require marginal modeling procedures would be whether or not the 

association between Gender and Political Orientation is the same at Time 1 as at Time 2; 

whether or not the association between Religiosity and Political Orientation has stayed the 

same for the two points in time; whether the latter holds true for both men and women, etc. 

Such questions can be answered by comparing the relevant two- and three dimensional 
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marginal tables as a whole or in terms of suitable association coefficients (odds ratios, 

product moment correlations etc.). 

It can become quite complicated, certainly when additionally categorical latent 

variables are involved, how to arrive from the original cell frequencies in the joint (full) table 

with their estimated (co)variances to these complex functions in the marginal tables, along 

with their (co)variances. In Section 2, the necessary matrix operations are presented, along 

with a nice tool: the generalized exp-log notation. This notation has been developed 

originally by Grizzle, et al., and further generalized by Bergsma (Grizzle et al 1969, Kritzer 

1977, Bergsma 1997, BCH). With these tools, a large number of interesting types of research 

questions can be answered, some of which are presented in the next subsection. 

 

 

1.3 Types of Research Questions Requiring Marginal Modeling 

 

A very important area of application of marginal modeling is strictly longitudinal research 

with repeated measurements on the same respondents. Although it is always said – and we 

believe it to be true – that the great strength of longitudinal research is the study of 

individual gross changes, very often longitudinal data are simply used for investigating net 

changes or changes in marginal tables. To provide a few examples: panel data are used to 

study how the one-way marginal distributions of a particular characteristic such as Political 

Orientation changes over time, and whether these patterns are the same or not for men and 

women, or for young and old people. Further, are such growth curves or trends the same for 

two or more related characteristics, e.g., for Political party Preference and Preference 

Political Candidates? Or dealing (partially) with gross change: are the changes in turnover 

table Time 1 – Time 2 the same as the changes in turnover table Time 2 – Time 3? For the 

answers to all these types of questions marginal modeling is needed when using longitudinal 

data. 

If the data come from trend studies based on repeated cross-sections, many of these 

questions can be answered by standard statistical techniques because the observations at 

different occasions are in principle independent and identically distributed. But also for 

trend data, sometimes marginal modeling procedures are needed, given particular research 

questions, e.g., when comparing the (net) changes in related characteristics. When the 

respondents in each of the repeated cross-sections provide information on his or her uses of 

alcohol (A), soft drugs (S) and hard drugs (H), it might be interesting to see whether the 

three separate one-variable growth curves for A, S, and H behave in the same way over time. 

Marginal modeling procedures are needed to test this and related hypotheses. The full table 

is table TASH, where T refers to the time of observation. But the information about the one 

way marginal distributions of A, S, and D is provided by the same respondents at each 

particular point in time.  

A similar situation can occur in a single cross-sectional study. When a survey provides 

information about how the respondents feel about their body, i.e., about their face, eyes, 
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legs, hips, buttocks, body build, figure, etc. Next to investigating the correlations among 

these aspects, it is interesting to see whether the satisfaction with particular body aspects is 

different from other parts, whether there is more or less variation for some parts than for 

others, whether these differences are the same for adult men and women, boys and girls 

etc. Such kinds of questions again involve dependent observations whose dependencies 

should be taken into account. 

In a way, all the above examples essentially involve repeated measurements on the 

same respondents. However, clustering can occur in many other different ways. In 

educational research, pupils clustered in randomly chosen schools are investigated; in family 

research, families are randomly selected and within families husband, wife, and children; in 

many surveys, respondents must be seen as clustered within interviewers, and so on. Often 

this clustering is purposeful in the sense that the dependency is substantively interesting. 

But as often, and comparable to panel studies, the researchers ask questions about these 

data for which the dependencies are just a nuisance. Again, in such cases, marginal modeling 

procedures must be considered. 

Many more examples could be provided but the selection presented above might be 

sufficient for the reader to get an idea of the usefulness of marginal modeling. More 

examples can be found in methodological overviews, e.g., Hagenaars, 1990, Molenberghs 

and Verbeke, 2005; Diggle et al., 2002; Fitzmaurice et al., 2009; Bergsma et al., 2009. 

 

 

2. ML ESTIMATION AND TESTING PROCEDURES 

 

A categorical marginal model consists of three components: 

 

1. A collection of categorical marginal distributions 

2. Coefficients defined on the marginal distributions 

3. A linear model for the marginal coefficients 

 

To take a simple example, suppose we have three categorical variables A, B and C, which 

represent measurements of the same variable at three points in time. The first component in 

a marginal model may consist of the bivariate marginal turnover tables AB and BC. The 

second component, the coefficients of interest, could be the correlation coefficients in 

tables AB and BC, i.e., the correlations between A and B, and between B and C. Alternatively, 

the second component could be the sets of marginal loglinear association coefficients (or 

parameters) in AB and BC, denoted by    
   and    

  . The third component could be the linear 

model for the coefficients asserting equality of correlations or marginal loglinear parameters 

in tables AB and BC. 

The procedures and insights presented here owe much to the work of Lang and 

Agresti (1994), and of Grizzle Starmer and Koch (1969). Bishop et al. (1975) and especially 

Haber (1985) developed the first more general, but still rather restricted maximum 
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likelihood procedures for marginal models. However, the work by Agresti and Lang, based on 

algorithms by Aitchison and Silvey really constituted the first very general approach towards 

marginal modeling using maximum likelihood procedures (Aitchison and Silvey 1958, 1960; 

Lang 1996a; Lang and Agresti 1994). Bergsma extended the Lang-Agresti algorithm, made it 

feasible for very large tables, and applied it systematically to non-loglinear models by means 

of the generalized exp-log notation (Bergsma, 1997). Based on this work and the work by 

Becker and Yang (1998), BCH made it possible to define a very general class of marginal 

models involving latent class models. 

 

2.1 Practical specification of categorical marginal models 

 

In practice, the most convenient way to specify a categorical marginal model is often as 

follows. Suppose            are measurements of a categorical variable at K points in 

time, each having   categories. (Note that time is not essential here, the measurements 

could also be of   different items, provided all are measured on the same scale. We use 

time for convenience.) A new     marginal table    (Time × Response) of conditional 

probabilities can be defined as 

 

      
   

   
  , 

 

where   
   is the marginal proportion of subjects with response i at time t. The first 

component of the marginal model thus consists of the table of marginal proportions      
   

. It 

can be seen that the association in table TR relates to the differences in the marginal 

response distributions at the different points in time. Below, we outline three different basic 

approaches to modeling this association. They all involve defining association parameters 

        
     

on the marginal tables, for some appropriate function  . The     may be indexed as    
   if 

needed. 

Firstly, let us set the marginal coefficients, the second component of the model, to be 

the logarithms of the marginal proportions, 

   
           

   
  

A marginal loglinear model is now a linear model for the   coefficients. For example, the 

independence model for table TR is 

   
       

    
                                    

Model (1) is equivalent to the marginal homogeneity model 
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for          It follows that   
  in (1) is constant, and can be assumed zero without any loss 

of generality. With    
   the logarithms of the marginal proportions, the λ parameters in (1) 

are loglinear parameters. Of course, the marginal modeling approach is not restricted to the 

use of loglinear parameters. As an interesting alternative to the use of loglinear parameters, 

Ekholm et al. (1995) proposed the use of dependence ratios, defined for Table    as 

   
      

     
   

  
  . 

Interpretational and other advantages of the dependence ratio compared to the odds ratio 

are listed by Ekholm (2003). With    
   the dependence ratios instead of the log probabilities, 

Equation (1) still gives exactly the same marginal homogeneity model, but the   parameters 

will have a different interpretation. 

Model (1), whether loglinear parameters or dependence ratios are used, holds if and 

only if marginal homogeneity is true. A much less restrictive model has the form 

       

where     is some association coefficient for Table   , such as the correlation coefficient or 

Kendall's tau. This is the second approach to modeling the association in table TR. 

The third approach is a regression approach. For example, we may be interested in 

investigating how the (population averaged) mean response varies over time. With    a 

numerical score for category   of  , the mean response at time t can be denoted as 

  
  ∑     

  

 

  

Among the many familiar models for changes in means is the quadratic (marginal) regression 

model 

  
            

Although this looks like a familiar regression model, the observations at the different time 

points involve the same subjects, so marginal modeling techniques need to be used to find 

the ML estimates. The way to do this is discussed next.  

 

2.2 Matrix formulation of Categorical Marginal Models 

Before we describe the fitting procedure, we first give the matrix notation for marginal 

models, which is needed to implement the method on a computer. In our R-package cmm, 
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however, many matrices have been predefined, and many models can be specified without 

knowledge of matrix algebra.  

Denote the vector of proportions for the full table by  . The vector of marginal 

proportions of interest contains linear combinations of the elements of   and can be written 

as 

     

where M is an appropriate matrix of zeroes and ones (for more details see BCH). We can use 

the generalized exp-log notation of Kritzer (1977) and BCH to represent  , which we denote 

       to indicate its dependence on the marginal proportions. The generalized exp-log 

notation is very flexible, and for details we refer to BCH., but an example of the notation is 

as follows: 

                        

Here, A, B, and C are appropriate matrices, and a wide range of coefficients, including the 

epsilon coefficient used in Section 3.2, or the dependence ratio of Ekholm et al. (1995), can 

be represented in this way, see Section 3.3.1 in BCH for details. A linear model for such a 

vector of coefficients can then be denoted as 

                          

for an appropriate design matrix X and a parameter vector  .  

 

 

2.3 Estimation of parameters using maximum likelihood 

 

With   a vector of observed frequencies, the kernel of the multinomial log likelihood is given 

by 

                                  

where N is the sample size. The problem now is to find an estimator of   and of   satisfying 

(2), such that the multinomial likelihood (3) is maximized. 

 We will do this using the Lagrange multiplies technique, which is a general technique 

for maximizing a function subject to constraints. For this, we need to rewrite (2) in an 

equivalent form but without the   parameter. With the columns of matrix U spanning the 

orthogonal complement of the space spanned by the columns of X, we can give the 

equivalent representation 
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Now let   be the Jacobian of  , i.e., the matrix with (i,j)th entry the derivative of the ith 

coordinate of   with respect to its jth argument. With    a vector of Lagrange multipliers, the 

Lagrangian likelihood then is 

                                               

Taking derivatives with respect to log   and equating to zero leads to the Lagrangian score 

equation 

                         

where       is the vector of observed cell proportions,    is a diagonal matrix with the 

vector   on the main diagonal, and         . The maximum likelihood estimator of   is 

now a solution of (4) and (6), which can be found using a scoring type algorithm (BCH, 

Section 2.3.5; see also Lang and Agresti (1994), Bergsma (1997), Lang (2004)). 

A main assumption for the algorithm to work is the regularity condition that there are 

no redundant constraints. To verify this, it is normally sufficient to check that matrix U has 

full column rank. 

Once the ML estimates  ̂ have been obtained, marginal models can be tested by 

means of two well-known test statistics: the likelihood ratio test statistic 

        ∑  

 

   
 ̂ 

  
 

and the Pearson’s chi-square test statistic 

     ∑
     ̂  

 

 ̂ 
 

    

where         is the sample proportion in cell  . If the postulated model is true, these test 

statistics have an asymptotic chi-square distribution with degrees of freedom (df) equal to 

the number of independent constraints on the cell probabilities, which is normally equal to 

the column rank of  . 

 

2.4 The EM algorithm for marginal variable models with latent variables 

 

Extending the ML algorithm so that latent variables can be included in the model is now 

straightforward using the EM (expectation-maximization) algorithm. The EM algorithm 

consists of repeated application of an E-step and an M-step, which we will explain now. First 

we need the concept of a complete data likelihood, by which we mean the likelihood that 

would have been obtained had the latent variables been observed. The complete data 

likelihood contains an unobserved multinomial frequency vector, which is replaced in the E-
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step by its expected value given the observed data and the current estimated population 

probabilities (Haberman, 1979; Becker and Yang 1998; BCH). For simplicity, consider a single 

manifest variable A and a latent variable X, and denote the estimated probability that     

given     by  ̂     
   

. It can then be shown that expected complete data frequencies are 

given as 

 ̂   
      

   ̂     
   

   

The M-step now consists of maximizing the complete data likelihood, with the unobserved 

frequencies replaced by the  ̂   
  , using the Lagrange multiplier method described in the 

previous subsection.  

It can be shown that repeated application of the E and M steps as described above leads 

to a local maximum of the likelihood (Wu, 1983). However, such a local maximum is not 

always the global maximum, and different starting values may need to be tried to find the 

global maximum. 

 

2.5 Dealing with missing data 

 

We now outline a likelihood based method to deal with missing data. The simplest case to 

deal with is the case that data is missing completely at random (MCAR). This means that 

events leading to a missing observation on a particular variable are independent of both 

observable and unobservable variables. This case is straightforward, because only the 

likelihood needs to be adapted, and no extra modeling needs to be done. Alternatively, data 

may be missing at random (MAR), meaning that the missingness does not depend on the 

missing data itself. In this case, the missingness needs to be modeled. Fay (1986) developed 

a flexible approach for this, which we outline below. Finally, data may be not missing at 

random (NMAR), when being missing depends on the unseen observations themselves. In 

this case it may be difficult to model the missingness mechanism, and we will not discuss this 

case further. 

 

Let us illustrate the MCAR case with an example of two categorical variables   and  . 

Suppose for some subjects, neither   nor   is observed, for some we have observations only 

on  , for others only on  , and for the remainder on both   and  . If missingness is MCAR, 

the kernel of the log likelihood is then simply the sum of the log likelihood kernels for the 

three groups, which gives 

          
       ∑   

       
 

 

 ∑   
       

 

 

 ∑      
         

  

   

   ∑    
   

   

 

where   
  is the number of subjects for whom neither   nor   is observed,    is the 

corresponding expected proportion. Maximizing this likelihood subject to constraints gives 

the MCAR estimates. This maximization can be done using the EM algorithm, making use of 

the Lagrange multiplier method of Section 2.3 in the M-step for fitting the marginal 

constraints.  
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In the MAR case, the likelihood can be obtained by introducing for each variable   an 

additional indicator variable   , such that      for subjects that have a missing observation 

on variable  , and      otherwise. The indicator variables are observed, and 

      
    represents the number of subjects with missing observations on both   and  ,          

      

represents the number of subjects for whom     and which have a missing observation on 

 , and so forth. We obtain the following likelihood:  

             
            

      ∑        
               

     

 

  ∑        
               

     

 

  ∑          
                  

         ∑          
      

          

  

Fay’s (1986) approach involves modeling the relations among indicator and non-indicator 

variables by means of path models, or, more generally, loglinear models. Typically the EM 

algorithm will be needed to find ML estimates of cell proportions (for further details, see 

Fay, 1986 or Vermunt, 1997). We can then readily incorporate marginal constraints in the M-

step as outlined above.  

 It may be wondered if problems arise when combining a marginal model with Fay’s 

(loglinear) constraints. Bergsma and Rudas (2002) gave general conditions on the variation 

independence of marginal and loglinear parameters, which guarantee the possibility of 

combining such marginal and loglinear constraints. (We note, however, that for some of the 

more complex marginal models, even without additional loglinear constraints and not 

involving latent variables, some difficulties may arise, e.g., in the determination of the 

correct number of degrees of freedom; see BCH, Section 4.5, which also gives a solution to 

these difficulties.) 

 

 

3. ALTERNATIVE ESTIMATION METHODS 

 

Besides maximum likelihood, there are two other popular approaches for estimating and 

testing marginal models: generalized estimating equations (GEE) and GSK (after Grizzle, 

Starmer and Koch, 1969). Below we describe advantages and disadvantages compared to 

each other and to the ML method. Most importantly, GEE and GSK estimates are much 

easier to compute than ML estimates, in particular for large numbers of variables, but they 

miss the flexibility and guaranteed efficiency of the ML method. For example, GEE cannot 

easily deal with latent variables. Standard GEE implementations allow the inclusion of 

continuous covariates, and we outline a loglinear model based procedure using which this 

can be done for marginal modeling with the ML method as well, and more efficiently. We 

end the section with a discussion of random coefficient models, which are also popular for 

modeling dependent data, but to answer different research questions.  

 

3.1 Description of the GEE method and its relation with ML estimation 
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The probably most popular and widespread alternative method to ML for marginal modeling 

is the GEE methodology. In part to overcome some of the computational difficulties with 

obtaining the maximum likelihood estimates for complex marginal models, Liang and Zeger 

developed an extended quasi-likelihood approach called Generalized Estimating Equations 

(GEE) (Liang and Zeger, 1986; Diggle et al., 2002; Molenberghs and Verbeke, 2005; Lipsitz 

and Fitzmaurice, 2009). Recognizing that the parameter estimates in marginal models are in 

general consistent, even when ignoring the dependencies among the observations, the GEE 

approach replaces the often complex dependence structure by a much simpler one, such as 

independence or uniform association, and adjusts standard errors for any misspecification of 

the dependence using so-called sandwich estimators. A very important possibility in GEE is 

the use of a correlation structure which does not depend on covariates, because this allows 

regression parameters to be estimated consistently even if covariates are continuous. Below, 

we briefly describe the GEE method (more details can be found in the aforementioned 

literature), and in Section 3.3 we compare it with the ML method. 

Like ML, the GEE approach can be used to fit marginal models of the form (2). 

However, standard GEE notation is slightly different, in particular, for subject  , the model of 

interest is written in the form 

                           

where    is some vector of (possibly marginal) coefficients,    is a matrix of subject specific 

covariates, and   is a so-called link function, which is assumed to be invertible, and which 

operates coordinatewise, i.e., 

       (
      

 
      

)  

Let    be vector consisting of response probabilities of subject  . As shown in the appendix, if 

        is a vector of marginal proportions, and   has full column rank, the Lagrangian 

score equation (6) implies 

∑
   

 

  
  

         

 

   

                   

where       is the vector of observed marginal proportions, and  

        
                               

is the covariance matrix of the observed marginal proportions for subject  .  

 As they stand, Equations (7) and (8) contain too many unknowns to be solved, 

namely the vector   and the off-diagonal elements of the   . However, as noted by Liang 

and Zeger, if the    are replaced by appropriate “working” covariance matrices (which may 

need to be estimated), then the resulting estimator of   will still be consistent, even if the 
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working covariances are wrong. Its standard error is then consistently estimated by means of 

the so-called sandwich estimator.  

 The equation (8) with    replaced by a working covariance matrix is called a 

generalized estimating equation (GEE). Normally, (8) needs to be solved using iterative 

methods. Note that    in (7) and (8) can represent a wide range of (marginal or non-

marginal) parameters, with   the corresponding sample value.  

In practice working correlations for marginal parameters are specified, from which 

working covariances can then be computed. Commonly used working correlation structures 

are independence (all working covariances zero), exchangeable (all working correlations 

equal, i.e., uniform association), autoregressive (autoregressive correlation structure), or 

unstructured. In these cases, estimation of working correlations is done by averaging 

conditional parameters over subjects, ensuring that working correlations are identical for all 

subjects (and thus do not depend on individual covariates). This ensures precise estimation 

of the    in (8) even if covariates are continuous, which in turn ensures consistent 

estimation of  . The fact that estimators of the    may be (potentially heavily) biased does 

not matter for sufficiently large samples.  

We can now point out the close relationship between GEE and ML estimators. Firstly, 

in the case that the    are vectors of marginal proportions, then, as mentioned above, the 

estimating equation (8) follows from the Lagrangian score equation (6), so GEE and ML are 

closely related. In particular, if the working correlations equal the ML estimators, then it 

follows that the GEE and ML estimators of   coincide. Secondly, in the case that the    are 

not vectors of marginal proportions, then (8) is not implied by (6), and GEE and ML 

estimators generally do not coincide. Instead, as shown in the appendix, (8) with       

replaced by a first order Taylor approximation does follow from (6). Hence in this case, for 

large samples, if    in (8) is replaced by its ML estimator, GEE and ML estimators are likely to 

be close together. In Section 3.3 we outline how the ML method can be used to deal with 

continuous covariates as well. 

  

3.2 The GSK method 

 

A classical approach towards marginal modeling is the GSK one after Grizzle, Starmer and 

Koch who wrote the first seminal article about it (Grizzle et al. 1969). It is based on Weighted 

Least Squares (WLS) procedures. The GSK estimator of   in (7) minimizes the quadratic form 

∑             ̂     
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where  ̂     
 is the sample estimator of the covariance matrix of       (see Agresti, 2002, 

Section 15.1 for further details). Now   can be found by taking the derivative of this 

expression and equating to zero, which leads to the estimating equation 

∑    ̂     
             

 

   

                   

Note the similarity of (8) and (10), in particular, if   is the identity function then GEE is in fact 

a generalization of GSK, allowing a broader range of choices for the covariance matrices of 

the   . It can be seen that GSK requires many observations per covariate value in order to 

obtain a reasonable estimate  ̂     
  , which is required to estimate   well (Fitzmaurice and 

Molenberghs, 2009). In contrast, GEE allows the assumption that the correlation matrices of 

the    are independent of  , which permits the incorporation of continuous covariates. Note 

however, that such assumptions are also possible in GSK, but as far as we are aware this has 

not been done. 

The GSK estimator is asymptotically efficient, but as mentioned for small samples 

 ̂     
 may estimate the true covariance matrix       

 poorly, and a more structured working 

covariance may give better estimators, even if the structure is wrong, thus giving GEE an 

advantage. Unlike most GEE estimators, GSK estimators have a closed form and so are easier 

to compute. However, computation of GEE estimators generally appears to pose no major 

problems.  

Like GEE estimates, GSK estimates are often much easier to compute than the ML 

estimates. Moreover, just as ML estimates, GSK estimates have desirable asymptotic 

properties. However, in general, for both small and large samples, ML tends to have superior 

properties to GSK, as is made clear in the discussion section of Berkson (1980). From a 

practical point of view, ML generally handles very sparse tables better and provides more 

reliable results for the standard errors and the test statistics. Finally, the GSK approach has 

not been extended to deal with latent variables, and it is not clear it will retain its 

(computational) advantages with such an extension. 

 

3.3 Comparison of GEE and ML 

 

The main advantage of ML estimation compared to GEE is its flexibility, as the likelihood can 

be adapted to the situation at hand. This is illustrated with the example in Section 4.2, where 

the (marginal) association between latent variables and observed variables is modeled, 

which seems impossible to do with GEE. In general, the GEE method has not been well-

developed for dealing with latent variables. Furthermore, ML estimation of marginal models 

can readily incorporate Fay’s likelihood based method of dealing with missing data, as 

outlined in Section 2.5. It is true that for GEE imputation methods have been developed for 
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dealing with missing data, but these are not as flexible as Fay’s approach for modeling the 

missingness mechanism.  

 As mentioned in Section 3.1, GEE allows the assumption that the correlation matrix 

of the vector    does not depend on  , which makes the use of continuous covariates, or 

large numbers of categorical covariates, possible while still giving consistent estimators of  . 

Without such an assumption, the    cannot be estimated precisely, and the   which solves 

(8) may not be consistent. The flexibility of the ML method allows a similar assumption to 

easily be incorporated, namely by adding loglinear constraints, in particular, that the 

loglinear interaction parameters for    do not depend on  . This assumption and the 

parsimonious marginal model (7) ensures that the number of free parameters in the model 

does not depend on the sample size   even if covariates are continuous, and so standard 

asymptotic theory applies, ensuring the ML estimator of   is consistent (e.g., Agresti, 2013, 

Chapter 16). Hence this method provides a model-based analogue of unstructured working 

correlations in GEE, where the assumption that correlations among responses do not 

depend on covariates is replaced by the assumption that loglinear interaction parameters for 

responses do not depend on covariates. Further assumptions in the ML method can be made 

to mimic structured working correlations in GEE. Important to note here is that   is 

orthogonal to the loglinear parameters which are set to zero, because the observations     

are sufficient statistics for the proposed loglinear model, and   is a function of the 

         (see Lang, 1996b). This ensures asymptotic efficiency in estimating   is retained 

and the sandwich correction does not need to be applied to estimated standard errors, even 

if the loglinear model is wrong. This asymptotic efficiency is not shared by GEE estimators, 

because conditional correlations are not orthogonal to marginal parameters, and so in this 

aspect ML estimators have an important advantage compared to GEE estimators.  

However, GEE does have a major advantage compared to ML, namely its 

computational simplicity, allowing it to deal with rather large numbers of variables. For the 

ML method, the computational complexity increases exponentially with the number of 

variables, so no matter how fast computers will become in the future, it will always be the 

case that only a limited number of variables can be dealt with. Notwithstanding this, ML has 

broader scope than is commonly thought, and currently we can deal with about a million 

cells in a contingency table, which amounts to 20 dichotomous variables, 13 trichotomous 

ones, or 8 variables with 5 categories each.  

As mentioned above, ML estimators are guaranteed to be asymptotically efficient, 

whereas GEE estimators are only so if the working covariance matrices are consistent, which 

is unlikely in practice. Nevertheless, it has been noted that in many practical situations GEE’s 

efficiency loss is not big, and this has been our experience as well in simulations we have 

performed. We also found that for commonly used working covariances, GEE often, but not 

always, performs well compared to ML even if these working covariances are far off from the 

truth. The following simplified examples illustrate when GEE does and when it does not 

perform well. Consider the model of marginal homogeneity for the univariate margins of a 

      table    , i.e., the model 
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  {

    
      

   

 

The GEE estimator of β, assuming an independence working correlation matrix, is simply the 

average of the marginal observed proportions, i.e.,  

 ̃  
  

    
    

 

 
  

The ML estimator  ̂ does not in general have a closed form expression for this model. Let us 

now compare the efficiency of  ̃ and  ̂  in two extreme situations: firstly that  ,   and   are 

all perfectly positively correlated, and secondly that   and   are perfectly positively 

correlated, and both perfectly negatively correlated with  . In the first situation, it can be 

shown that the ML and GEE estimators coincide, so the fact that the working correlation is 

far off does not negatively affect the estimator compared to ML. In the second situation, it 

can be shown that the ML estimator has zero variance, while the GEE estimator has variance 

       . This is a pattern we found generally, using independence, exchangeable, or 

autoregressive working correlations: if the correlations among the marginal distributions do 

not differ too much, then GEE using standard working correlations and ML estimators have 

similar efficiency, while if there are large differences in marginal correlations, ML can 

significantly outperform GEE. 

Unlike GEE, the likelihood method gives overall goodness-of-fit statistics, such as the 

likelihood ratio test or Pearson chi-squared test. Instead, for GEE Wald type tests are 

commonly used, e.g., to test a linear regression line against the alternative of a quadratic 

regression line. A summary of other methods can be found in Lipsitz and Fitzmaurice (2009, 

Section 3.5). 

 We finally note there exist some misconceptions about the drawbacks of likelihood 

based methods compared to GEE. One common perception appears to be that likelihood 

based methods require a parameterization involving both marginal and higher order 

interaction parameters (e.g., Fitzmaurice and Molenberghs, 2009, p.14). But such a 

parameterization is clearly not necessary if the Lagrange multiplier technique outlined in 

Section 3 is used. A broad family of parameterizations is given by Bergsma and Rudas, 2002, 

but these are useful for modeling purposes and especially for determining the properties of 

models, and are unnecessary, and could even be cumbersome, for ML algorithms.  

 

 

3.4 Random coefficient models 

 

At least among social scientists, random coefficient models, also denoted as conditional, 

cluster specific, or subject-specific models, may well be the standard way of handling 

dependent observations (Agresti 2002; Agresti, 2013; Raudenbusch and Bryk 2003; 

Molenberghs and Verbeke 2005). However, marginal models (sometimes also called 
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population averaged models) and random effect models are generally used to answer 

different substantive research questions. They lead to different estimators which may also 

have very different substantive interpretations. Imagine a growth curve study where the 

dependent variable is being Conservative or not, and imagine that the effects of age are such 

that for each additional year there is a linear increase in the probability of being 

Conservative of .005 (e.g., at Age 18: .300; at age 19: .305; at age 20: .310, etc.). If these 

estimates had been obtained from a trend study in which at each successive year (age) a 

new sample was drawn from the same birth cohort, the interpretation of the age effect 

would run as follows: a randomly chosen person from the age group 18 (the average cohort 

member in the population at age 18) has a probability of being Conservative that is 10 x .005 

= .05 less than the probability that a randomly chosen person from this cohort at age 28 has 

of being conservative. If the data had come from a longitudinal study, following the same 

random sample from this birth cohort over time, and the estimates were obtained by 

marginal modeling, the interpretation would be exactly the same as for repeated 

independent samples. However, if in the longitudinal study a random coefficient model was 

applied to obtain the estimates, the interpretation would have been different because one 

conditions on the unobserved characteristics of the individuals: a randomly chosen person 

from age group 18 has a probability of being Conservative that is 10 x .005 = .05 less than for 

a randomly chosen person from this cohort at age 28, provided that the two individuals have 

the same unobserved characteristics. The one interpretation is not to be automatically 

preferred above the other. It obviously depends on the nature of the research question 

whether the marginal or the conditional approach is more adequate. 

Typically in the random coefficient literature, research questions about marginal 

distributions are handled by integrating out random coefficients. However, this may be 

computationally cumbersome, and the random coefficient models typically make needlessly 

restrictive and often unverifiable assumptions about the (nuisance) dependence structure. 

The marginal modeling approach advocated in this paper, in which assumptions about these 

dependencies do not need to be made, is much more flexible and realistic in this respect. 

 

 

 

4. EXAMPLES 

 

In this section two examples of marginal analyses on categorical data are presented. In the 

first example the stability of the association between two categorical variables over time is 

investigated on data collected in a complex rotating panel design. The second example 

illustrates how marginal models can be extended to include latent variables, and how the 

interaction between the latent and manifest variables can be defined using a non-loglinear 

approach using the epsilon     association coefficient instead of the better known loglinear 

two-variable interaction terms. 
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4.1 Analyzing data from a complex rotating designs 

 
In Chapter 4 of BCH the authors give due attention to the applicability of marginal models to 

longitudinal data collected in either a repeated cross-section or a panel study. In large scale 

social surveys often more complex designs are used, such as, for instance, a rotating panel 

survey, in which several subsamples are involved and each subsample is observed at 

multiple time points before being replaced by a new subsample. These designs, which also 

are referred to as accelerated longitudinal designs, combine the advantages of both panel 

and cross-sectional surveys.  

The Italian Continuous Labor Force Survey, supervised by Istat, the Italian National 

Institute of Statistics, collects data in a 2-2-2 rotating design on the labor market 

participation of respondents from the non-institutional Italian population. Each rotation 

group enters the study at a particular quarter of the year and is first observed for two 

consecutive quarters, then left out of the study for the next two quarters, before being 

interviewed again for two final consecutive quarters. In this way, seven different rotation 

groups span a period of three years. Table 3 shows the details of this rotating design 

covering the period 2004-2006 

 

 

 

Table 3. Structure of the 2-2-2 rotation design from the Italian Continuous Labor Force 

Survey covering the period 2004-2006. 

 

Data collected in this rotation design are partially dependent and partially 

independent. An assessment of changes between the first and the last quarter, for instance, 

only requires the comparison of independent data from the first and the seventh rotation 

group. On the other hand, an assessment of the net changes between the sixth and seventh 

quarters is partially based on independent data from the various rotation groups, but since 

the second and the sixth rotation group have observations at both quarters, part of the 

comparison will include dependent data as well. 

2004 2005 2006 

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 

RG1 + + - - + + - - - - - - 

RG2 - + + - - + + - - - - - 

RG3 - - + + - - + + - - - - 

RG4 - - - + + - - + + - - - 

RG5 - - - - + + - - + + - - 

RG6 - - - - - + + - - + + - 

RG7 - - - - - - + + - - + + 
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In the Continuous Labor Force Survey several measures for labor market participation 

of individuals are defined. First, each respondent is classified as employed, unemployed, or 

out of the labor force according to the definition of the International Labor Office (ILO). This 

classification is based on the respondent’s answers to several questions regarding his recent 

work situation. Second, a self-perception (SP) indicator is obtained by asking each 

respondent to classify himself as being employed, unemployed, or out of the labor force. In 

what follows, both the ILO and the SP measure will be treated as categorical variables with 

three response categories:  

1 = employed, 2 = unemployed, 3 = out of the labor force. 

Only respondents with complete data on both measures at the four measurement occasions 

were retained in the analysis. The number of respondents in each rotation group then varied 

around 27,000. The total number of respondents was 194,549.  

As a preliminary step in the analysis, the 4 × 3 × 3 Occasion × ILO × SP table was 

defined for each rotation group. Merging those seven tables in the appropriate way allows 

the construction of the 12 × 3 × 3 table Quarter (Q) × ILO (I) × SP (S), which is shown in Table 

4 (QIS).  

 

Table 4. The Quarter x ILO x SP table (QIS) 

 

 ILO=1 ILO=2 ILO=3 

 SP=1 SP=2 SP=3 SP=1 SP=2 SP=3 SP=1 SP=2 SP=3 

Q1 11342 188 405 2 887 187 36 837 14556 

Q2 23282 307 632 10 1632 329 40 1579 28904 

Q3 23544 379 725 9 1563 298 54 1795 29131 

Q4 23994 342 649 5 1704 303 56 1613 29186 

Q5 34956 433 711 14 2597 385 73 2622 43188 

Q6 46285 450 761 13 3004 507 86 3138 57000 

Q7 45294 461 881 13 2685 439 91 3780 55926 

Q8 34713 404 555 6 2380 339 70 2491 42347 

Q9 23676 338 471 3 1642 268 52 1780 28309 

Q10 23003 204 383 5 1278 224 52 1594 27786 

Q11 21738 185 323 7 1055 148 39 1850 26727 

Q12 10735 88 147 0 558 97 12 746 13070 

 

 

It is important to realize that the twelve different 3 x 3 tables reported in Table 4 are 

not based on completely independent observations, since each respondent is interviewed 
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four times, and hence contributes to each of the tables of the quarters in which he was 

interviewed. 

In the context of a study of the equivalence of the two measures, one could first look 

at their association. A quick glimpse at each of the 12 separate ILO x SP tables shows that 

both variables are strongly associated at each quarter, and one can then ask whether this 

association remains stable over time. Testing the hypothesis of a constant association over 

time amounts to the same as testing the fit of the no-three-variable interaction loglinear 

model [QI, QS, IS] to Table QIS: 

      
        

    
    

     
      

      
    

This model represents the hypothesis that the association between I and S does not depend 

on Q, although Q may have main effects on I and S. Correctly taking into account the 

observational dependencies among the data, analysis according to this model yields a test 

statistic                         with 44 degrees of freedom, which leads to a clear 

rejection of the proposed model. If the same model is tested without taking the 

dependencies into account by treating the 12 subtables as being based on independent 

samples, the test statistic becomes                        . In this example the 

“wrong” test statistic is larger than the “correct” statistic although both variables are 

strongly positively associated. Both analyses lead to the same qualitative conclusion, but this 

is of course due to the very large samples involved in the analyses. That the difference 

between the two test statistics is not very impressive may be explained by noting that the 

data come from seven independent rotation groups so that the dependency in the data is 

not extreme. 

In order to get an idea of what changes in association take place over time, one could 

look at changes in various local or global odds ratios. Here attention will be restricted to the 

global log odds ratio  

 

   (
                             

                             
)  

 

which is the log odds ratio obtained by dichotomizing both variables with response = 1 

(employed) versus response either = 2 (unemployed) or = 3 (out of the labor force). Hence, 

the original response categories 2 and 3 are collapsed into a single category. All the twelve 

log odds ratios proved to be larger than 9 and, moreover, to exhibit a clear increase over 

time, as is shown in Figure 1. 

 

Figure 1. Log odds ratio for ILO and SP as function of Quarter. The vertical bars represent 

95% confidence intervals. 
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  The results of an orthonormal trend analysis with components up to the quartic are 

given inTable 5. 

Table 5. Orthonormal trend analysis on log odds ratios 

 

These results show that there is a strong linear component in the overall trend for this log 

odds ratio, and, although the quadratic component is not significant, the cubic and quartic 

both are.  

 

 

4.2 Non-loglinear Latent Class Models 

 

There exists a classical data set on Party and Candidate Preference, viz. Lazarsfeld’s 1940 

data on Party and Candidate Preference in Erie County, Ohio (Lazarsfeld 1972, p. 392). This 

data set is presented in Table 6. Party Preference is a dichotomous variable: 1. Democrats 2. 

Republicans, as is Candidate Preference: 1. Against Willkie (further indicated as Democrats) 

2. For Willkie (further denoted as Republicans), where it must be remembered that Willkie 

was the (defeated) 1940 Republican Presidential Candidate running against Roosevelt.  

1 2 3 4 5 6 7 8 9 10 11 12
Quarter8.5

9.0

9.5

10.0

10.5

11.0

11.5

Log odds ratio

 B SE Z 

Linear 1.35 0.20 6.86 

Quadratic 0.11 0.19 0.59 

Cubic 0.51 0.18 2.76 

Quartic 0.36 0.17 2.19 
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Table 6. Party Preference (PP) and Presidential Candidate Preference (CP); Erie County Ohio, 

1940; t1 – August, t2 – October 

Source: Lazarsfeld 1972, p. 392 

 

Hagenaars (1993) fitted several latent class models to the data in Table 6. A graphical 

representation of the comparatively best fitting latent class model is depicted in Figure 2, in 

which A through D refer to the variables in Table 6 and Y and Z are two dichotomous latent 

variables with Y representing latent party preference and Z latent candidate preference. The 

model depicted here assumes that there is no change over time in both latent variables, but 

that each latent variable is measured twice by an unreliable indicator variable. 

 

Figure 2 : Latent class model for data in Table 6. 

   A  Y  B 

 

 

   C  Z  D 

 

The basic latent class analysis (LCA) equation for the model in Figure 2 can be written 

as  

,||||| ZD
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yb
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YZ

yz

YZABCD

yzdcba

YZ

yz

YZABCD

yzabcd      (11) 

where YZ

yz  represents the joint probability of scoring (y,z) on YZ, YA

ya

| the conditional 

response probability of scoring A=a, given Y=y, and the other symbols have obvious 

analogous meanings. The first part of Equation (11) ( YZABCD

yzdcba

YZ

yz

YZABCD

yzabcd

|  ) is a tautology and 

by definition true, as it follows from basic rules of probability calculus. However, under the 

assumption of local independence, the joint conditional probability YZABCD

yzdcba

|  can be written 

in a more simple way as the product of the marginal conditional probabilities in the last part 

 C. CP – t1 1. Dem. 1. Dem. 2. Rep. 2. Rep. 

A.PP-t1 B-PP-t2 D.CP – t2 1. Dem. 2. Rep. 1. Dem. 2. Rep. 

1. Dem. 1. Dem.  68 2 11 12 
1. Dem. 2. Rep.  1 1 0 1 
2. Rep 1. Dem.  1 0 2 1 
2. Rep 2. Rep.  23 11 3 129 
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of Equation (11), i.e., as ZD

zd

ZC

zc

YB

yb

YA

ya

YZ

yz

||||  . Note that here it is further assumed that latent 

variable Y has only an effect on A and B, whereas latent variable Z has only an effect on C 

and D. 

The model in Figure 2 can equivalently be represented as loglinear model 

[YZ,YA,YB,ZC,ZD], using the usual short hand notation for denoting hierarchical loglinear 

models, written out in full as 

.ln ZD
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yb

YA

ya

YZ

yz

D

d
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Z
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YZABCD

yzabcd         (12) 

This model fits the data in Table 6 well with G2 = 7.32, df = 4, p = .120 (X2 = 11.53). Because 

this example concerns different kinds of restrictions on the parameters of Equation  (11) and 

(12), they are given here in Table 7. 

Table 7. Estimates of Parameters in Equations (11) and (12) applied to the data in Table 6 

Y=y Z=z YZ

yz̂                                

 

YA

y

|

1̂  YA

y

|

2̂  YB

y

|

1̂  YB

y

|

2̂  ZC

z

|

1̂  ZC

z

|

2̂  ZD

z

|

1̂  ZD

z

|

2̂  

1 1 .315 .965 .035 .991 .009 .853 .147 .986 .014 
1 2 .051 .965 .035 .991 .009 .081 .919 .000 1.000 
2 1 .101 .013 .987 .004 .996 .853 .147 .986 .014 
2 2 .534 .013 .987 .004 .996 .081 .919 .000 1.000 

               874.ˆ
11 YZ         967.4ˆ046.1ˆ567.2ˆ916.1ˆ
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                                              (s.e. = .024)    (s.e. = .042)     (s.e. = .016)     (s.e. = .022)   

 
 

Latent class outcomes always contain a lot of detailed and interesting information, 

which will be largely ignored here. The focus will be on the ‘factor loadings’, representing 

the associations between the latent variables and their indicators and thus expressing the 

‘reliability’ of the measurements, assuming there is a one-to-one correspondence between 

the meanings of the categories of the latent variables and their indicators (Hagenaars 2002, 

2010). 

The loglinear parameterization of the latent class model in Equation (12) is identical 

to its general formulation in Equation (11) in the sense that they yield the same estimated 

probabilities for the full table ABCDYZ if no further restrictions are imposed on the 

parameters (except for the usual identifying restrictions). Therefore, the strength and 

direction of the relationships between the variables can be expressed by means of the two-

variable loglinear parameters from Equation (12), which can be computed on the basis of the 

conditional response probabilities in Equation (11). The pertinent  ̂ estimates are reported 

at the second-to-last row of Table 7. According to these loglinear association coefficients, 

manifest variable D is the most reliable indicator, followed by B, A, and C. Note however that 
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the very large size of the effect of Z on D is a consequence of the fact that Table ZD contains 

an almost empty cell with  ̂   
   

 < 0.001.  

However, expressing the directions and strength of the relationships among the 

variables in terms of the loglinear parameters and odds ratios, in other words, 

parameterizing the basic latent class as a loglinear model, is in a way arbitrary. For example, 

researchers may prefer to describe the relationships between the latent variables and their 

indicators in terms of the differences ε between particular conditional response probabilities 

rather than in terms of odds ratios. Coefficient ε is a measure of the strength of the effect of 

an independent variable X on a dependent variable Y. When both variables are dichotomous 

with scores 0 and 1, coefficient ε is defined as a difference of two conditional probabilities: 

 

                         

 

This coefficient is actually the regression coefficient with Y regressed on X. For example, the 

effect of Y on A can is estimated as follows, using the estimated conditional response 

probabilities in Table 7: 

 952.013.965.ˆˆˆ |

21

|

11

|

11  YAYAYA  .  

In the present context these values of ε can be interpreted as reliabilities, since they 

indicate how strongly each observed indicator is related to the latent variable it should 

measure. The estimated ‘reliabilities’ in terms of ε are presented in the last row of Table 7. 

Indicator C would now again be characterized as the most unreliable indicator, but the other 

indicators show more or less the same degree of reliability.  

As long as no further restrictions are imposed on the parameters, it is largely a 

matter of the researcher’s reasoned preferences whether to express the basic latent class 

model as a multiplicative/loglinear model with the λ-parameters or as a basically additive 

model and use the ε’s, as long as both formulations lead to the same estimated probabilities 

for the joint table. However, the explicit choice of an appropriate parameterization becomes 

more urgent and even necessary if (additional) restrictions are imposed on the LCA model 

that lead to different implications for the data, essentially concerning restrictions that 

cannot be represented in the form of conditional independence relationships. 

For example, it is an obvious and natural research question to ask whether or not the 

reliabilities of the indicators in the above example are all the same in the population. But 

then it does matter for the test outcomes and the estimates of the probabilities how the 

reliabilities are expressed. In general, if the (log) odds ratios for two tables are the same, the 

ε’s will be necessarily different and vice versa. Therefore, estimating the probabilities for the 

complete table under the usual independence restrictions plus the extra restriction of equal 

reliabilities will yield different outcomes when the pertinent odds ratios (two-variable 

loglinear parameters) have been set equal to each other or when the pertinent ε’s are set 

equal. 

Imposing the equality restrictions on the odds ratios or loglinear parameters poses no 

special problems in the sense that such restrictions can easily be tested and the restricted 
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reliabilities estimated using Haberman’s and Goodman’s procedures as implemented in 

widely used software such as LEM (Vermunt 1997b), MPLUS (Muthen and Muthen 2006), or 

Latent Gold (Vermunt and Magidson 2005). 

However, for estimating latent class models with equal reliabilities in terms of ε’s, 

these standard estimation procedures cannot be used. Such a restriction of the reliabilities in 

terms of ε’s brings the latent class model outside the exponential family so that the standard 

(Goodman/Haberman) routines can no longer be used. However, an appropriate ML 

estimation procedure is provided by the marginal modeling approach. 

Some of the important outcomes applying the standard procedure where possible, as 

well as the marginal modeling approach are as follows. The most restrictive hypothesis that 

all reliabilities in the two-latent variable model are the same has to be rejected both for the 

pertinent odds ratios (G2 = 25.16, df = 7, p = .001) as for the ε’s (G2 = 32.98, df = 7, p < .001). 

The test result for the baseline two latent variable model without extra reliability restrictions 

discussed before was G2 = 7.32, df = 4, p=.120. The ‘all reliabilities equal’ models can be 

conditionally tested against this baseline model, leading clearly to the same conclusions as 

the unconditional tests: the strict equalities have to be rejected. 

An interesting hypothesis that fits the data for the reliabilities in terms of odds ratios 

(G2 = 7.64, df = 5, p=.177) but not in terms of ε’s (G2 =15.14 df = 5, p = .005) is the restriction 

that in the two-latent variable model, the reliabilities increase from wave one to wave two, 

but with the same amount for party and candidate preference: 

.11111111

11111111

ZDZCYBYA

ZDZCYBYA or






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In terms of ε as reliability measure, a model that did fit was the model in which change was 

allowed in the reliability of candidate preference but the reliabilities of party preference 

were assumed not to change: 

.|
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|
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YBYA    

The test outcomes are: G2 = 8.45, df = 5, p = .133. The reliabilities were estimated as 
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Different conclusions can and sometimes will be reached when different parameterizations 

are applied. The marginal modeling approach offers the researcher more possibilities to 

choose from and in this way more chance of performing analyses that are closer to one’s 

research questions. 
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5. CONCLUSION 

Marginal modeling of categorical data provides very important extensions of categorical data 

analysis techniques for situations where the data are dependent, and the dependencies are 

not of primary interest. Dependent, or clustered, data occur a lot in practice, so this 

extension is important. Moreover, the methodology used for marginal modeling can be used 

outside the clustering context for other nonstandard situations, for example, to estimate 

correlation or association models that fall outside the exponential family, as shown by the 

second example in the previous section. 

The maximum likelihood methodology of this paper is rather flexible and efficient in 

handling large tables, but still some work needs to be done to make it suitable for very large 

problems, say, marginal analysis for longitudinal studies with at least, say, 10 to 20 waves, 

depending on the number of categories per variable. The discussion here was limited to 

marginal models for categorical data. In fact, marginal models for continuous data may be 

equally interesting. But these have been around for a long time, not always under the name 

of marginal models but, for example, under the disguise of MANOVA and the like. BCH 

discuss several of these models (BCH, Section 7.1). 

 Finally, and perhaps most importantly, estimation procedures cannot be used in 

practice unless appropriate computer programs are offered. Bergsma and Van der Ark have 

developed a Mathematica and an R package version to estimate marginal models (BCH; 

Bergsma and Van der Ark 2009). More information can be found on the website 

www.cmm.st developed and maintained by Bergsma. 
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APPENDIX 

We will show how the GEE estimating equation (8) can be derived from the multinomial 

score equation (6). In particular, if   is a vector of marginal proportions, then (8) follows 

from (6), while otherwise (8) follows from a first order Taylor approximation to (6).  

 Denote the derivative of   by  ̇ and let    be the diagonal matrix with the derivative 

vector  ̇     on the main diagonal. Then by standard analysis, 

   
 

  
      

    

Hence, (8) reduces to 

http://www.cmm.st/
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∑     
    

         

 

   

                

Writing  

  (

  

 
  

)    (

  

 
  

)    (
  

 
  

)   

and 

  (
    
   
    

)    (
    
   
    

)  

we can write (13) as 

    ̇
                          

Suppose the columns of   span the orthogonal complement of the columns of  . Then (14) 

holds if and only if there exists a   such that 

  ̇
                 

Premultiplying both sides by   ̇   shows this is equivalent to 

       ̇              

Write 

  (

  

 
  

)  

where    is the probability vector for subject  , i.e., each subject has its own probability 

vector. First suppose       is a vector of marginal probabilities and assume      is a so-

called homogeneous function of  , which is usually the case in practice (see Section 3.3.3 in 

BCH for details). Then   is given by  

                

and homogeneity implies that (15) is equivalent to 

           ̇      

But this equation follows from the Lagrangian score equation (6) by premultiplying both 

sides by     Hence, we have shown that the estimating equation (8) is implied by the 

multinomial score equation (6).  
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If, on the other hand,   is a nonlinear function of  , then (15) does not follow from 

(6). However, the two equations are closely related, which can be seen as follows. Let   be 

the Jacobian of  . Then, using the delta method, the asymptotic covariance matrix of   is 

found to be 

                              

and again under homogeneity of     , (15) with    replaced by (16) is equivalent to 

              ̇               

A Taylor expansion of the difference     is given as 

                                

Since   approaches   as the sample size goes to infinity, for large samples the remainder 

term             will then become negligible compared to the other terms. Replacing 

    in (17) by its first order Taylor approximation           gives 

                    ̇      

This equation follows from the Lagrangian score equation (6) by premultiplying both sides by 

       

 

REFERENCES 

Aitchison, J. and Silvey, S.D.  1958. “Maximum likelihood estimation of parameters subject to 

restraints. “ Annals of Mathematical Statistics, 29: 813-828 

Aitchison, J. and Silvey. S.D. 1960 “Maximum-likelihood estimation procedures and 

associated tests of significance.” Journal of the Royal Statistical Society, Series B: 154-171. 

Agresti, A. 2002. Categorical Data Analysis (Second Edition). Hoboken, Wiley 

Agresti, A. 2013. Categorical Data Analysis (Third Edition). Hoboken, Wiley 

Bassi, F., Hagenaars, J. A., Croon, M. A., & Vermunt, J. K. 2000. “Estimating true 

changes when categorical panel data are affected by uncorrelated and correlated 

errors.”  Sociological Methods and Research, 29, 230-268. 

Bartolucci, F. and A. Forcina 2002. “Extended RC association models allowing for order 

restrictions and marginal modelling.” Journal of the American Statistical Association, 97: 

1192-1199. 

Becker, M.P. and Yang, I. 1998.  “Latent class marginal models for cross-classifications of 

counts.”  In A.E. Raftery (Ed.), Sociological Methodology, 1998: 293-326. Oxford: Blackwell 



33 
 

Bergsma, W. P. 1997.  Marginal Models for Categorical Data. Tilburg: Tilburg University 

Press. 

[BCH] Bergsma, W., Croon, M., and Hagenaars, J.A. 2009.  Marginal models for dependent, 

clustered, and longitudinal categorical data. New York: Springer. 

Bergsma, W. P., & Rudas, T. 2002. Marginal models for categorical data. The Annals of 

Statistics, 30, 140-159. 

Bergsma, W. P., & Van der Ark, L. A. 2012. cmm: Categorical marginal models. R package 

version 0.4. 

 

Berkson, J. 1980. “Minimum chi-square, not maximimum likelihood!” Annals of Statistics, 8: 

457-487 

Bishop, Y.V.V., Fienberg, S.E. and Holland, P.W. 1975.  Discrete Multivariate Analysis. 

Cambridge: MIT Press 

Caussinus, H. 1966.  “Contribution à l’analyse statistique des tableaux de correlation.”  

Annales de la Faculté des Sciences de l’Université de Toulouse, 29: 77-182 

Croon, M.A., Bergsma, W.P., and Hagenaars, J.A. 2000. “Analyzing change in categorical 

variables by generalized log linear models.” Sociological Methods and Research, 29: 195-229 

Diggle, P.J., Heagerty, P.J., Liang, K.Y., and Zeger, S.L. 2002. Analysis of Longitudinal Data. 

Oxford: Oxford University Press 

Duncan, O.D. 1979. “Testing key hypotheses in panel analysis.”  In K.F. Schuessler (Ed.), 

Sociological Methodology, 1980: 279-289. San Francisco: Jossey-Bass 

Duncan, O.D. 1981.  “Two faces of panel analysis: parallels with comparative cross-sectional 

analysis and time-lagged association.”  In Leinhardt (Ed.), Sociological Methodology, 1981: 

281-318. San Francisco: Jossey-Bass 

Edwards, D. 2000. Introduction to graphical modelling. New York: Springer. 

 
Ekholm, A., Smith, P. W. F. & McDonald, J. W. 1995. “Marginal regression analysis of a 

multivariate binary response.” Biometrika, 82, 847-854 

Ekholm, A. 2003. “Comparing the odds and the dependence ratios.” In Hoglund, Jantti, 

Rosenqvist (eds), Statistics, Econometrics and Society: Essays in honour of Leif Nordberg, 

pages 13-25. Helsinki: Finland 

Fay, R. E. 1986. “Causal models for patterns of nonresponse.” Journal of the American 

Statistical Association, 81, 354-365. 

 



34 
 

Fitzmaurice, G., Davidian, M., Verbeke, G., & Molenberghs, G. (Eds.) 2009. Longitudinal data 

analysis: A handbook of modern statistical methods. Chapman & Hall/CRC. 

 

Fitzmaurice, G.  and Molenberghs, G. 2009. “Advances in longitudinal data analysis: An 

historical perspective.” In: Fitzmaurice, Davidian, Verbeke, Molenberghs (Eds.), Longitudinal 

Data Analysis, 43-78. 

Goodman, L. A. 1973. “The analysis of multidimensional contingency tables when 

some variables are posterior to others: A modified path analysis approach.” 

Biometrika, 60, 179-192. 

Goodman, L. A. 1974.” Exploratory latent structure analysis using both identifiable 

and unidentifiable models.”  Biometrika, 61, 215-231. 

Grizzle, J.E., Starmer, C.F., and Koch, G.G. 1969. “Analysis of categorical data by linear 

models.”  Biometrics, 25:489-504 

Haber, M. 1985.  “Maximum likelihood methods for linear and loglinear models in 

categorical data.” Computational Statistics and Data Analysis, 3:1-10 

Haberman, S.J. 1979. Analysis of Qualitative Data, Volume 2: New Developments. New York: 

Academic Press 

Haberman, S. J. 1988. “A stabilized Newton-Raphson algorithm for loglinear models 

for frequency tables derived by indirect observation.” In C. C. Clogg (Ed.), Sociological 

methodology: Vol. 18: 193-211. Washington, D.C.: American Sociological Association. 

 

Hagenaars, J.A. 1986. “Symmetry, quasi-symmetry, and marginal homogeneity on the latent 

level.” Social Science Research, 15: 241-255 

Hagenaars, J. A. 1988. “Latent structure models with direct effects between indicators: Local 

dependence models.” Sociological Methods and Research, 16: 379-405. 

 

Hagenaars, J.A. 1990. Categorical Longitudinal Data: Log-linear panel, trend, and cohort 

analysis. Newbury park: Sage 

Hagenaars, J. A. 1993. Loglinear models with latent variables. Newbury Park: Sage. 

 

Hagenaars, J. A. 1998. “Categorical causal modeling: latent class analysis and 

directed loglinear models with latent variables.”  Sociological Methods and Research, 

26: 436-486. 

Hagenaars, J. A., & McCutcheon, A. L. 2002. Applied latent class analysis. Cambridge: 

Cambridge University Press 



35 
 

Hagenaars, J. A. 2002. “Directed loglinear modeling with latent variables: Causal models for 

categorical data with nonsystematic and systematic measurement errors.”  In J. A. 

Hagenaars & A. L. McCutcheon (Eds.), Applied latent class analysis: 234-286. Cambridge: 

Cambridge University Press. 

 

Hagenaars J.A. 2010. “Loglinear latent variable models for longitudinal categorical data.” In 

Van Montfort K., Oud, H., and Satorra A. (Eds.), Longitudinal Research with Latent Variables: 

1-36. Berlin: Springer 

Hagenaars, J.A., Bergsma W., Croon, M. 2013 (forthcoming). “Nonloglinear marginal latent 

class models.”  In G.R. Hancock and  G.B. Macready (Eds.). Advances in latent Class analysis: 

A Festschrift in Honor of C. Mitchell Dayton. Charlotte,NC: Information Age Publishing 

Koch, G.G., Landis, J.R., Freemann, D.H., and Lehnen, R.G. 1977. “A general methodology for 

the analysis of experiments with repeated measurements of categorical data.” Biometrics, 

33: 133-158. 

Kritzer, H.M. 1977.  “Analyzing measures of association derived from contingency tables.” 

Sociological Methods and Research, 5: 35-50 

Lang, J. B. 1996a. “Maximum likelihood methods for a generalized class of log-linear 

models.” The Annals of Statistics, 24: 726-752. 

 

Lang, J. B. 1996b. “On the partitioning of goodness-of-fit statistics for multivariate 

categorical response models.” Journal of the American Statistical Association, 91: 1017-1023. 

Lang, J.B. 2004. “Multinomial-Poisson homogeneous models for contingency tables.” Annals 

of Statistics, 32: 340-383. 

Lang, J.B. and Agresti, A. 1994. “Simultaneously modeling the joint and marginal 

distributions of multivariate categorical responses.” Journal of the American Statistical 

Association, 89: 625-632. 

Lazarsfeld P.F. 1972. “The problem of measuring turnover.”  In P.F. Lazarsfeld, A.K. Pasanella 

and M. Rosenberg (Eds.), Continuities in the language of social research: 388-398. New York: 

Free Press. 

Lazarsfeld, P. F., & Henry, N. W. 1968. Latent Structure Analysis. Boston, MA: Houghton 

Mifflin. 

 

Lauritzen, S. L. 1996. Graphical models. Oxford: Clarendon Press. 

Liang, K.Y and Zeger, S.L. 1986. “Longitudinal data analysis using generalized linear models.” 

Biometrika, 73: 13-22. 



36 
 

Lipsitz, S., & Fitzmaurice, G. 2009. “Generalized estimating equations for longitudinal data 

analysis.” In: Fitzmaurice, Davidian, Verbeke, Molenberghs (eds), Longitudinal Data Analysis, 

43-78. 

Lipsitz, S. R., Laird, N. M., & Harrington, D. P. 1991. “Generalized estimating equations for 

correlated binary data: using the odds ratio as a measure of association.” Biometrika, 78: 

153-160. 

Molenberghs, G. and Verbeke, G. 2005. Models for Discrete Longitudinal Data. New York: 

Springer 

Muthén, L. K., & Muthén, B. O. 1998. Mplus: Statistical analysis with latent variables. (User’s 

guide sixth edition). Los Angeles, CA: Muthén and Muthén. 

Raudenbush, S.W. and Bryk, A.S. 2003. Hierarchical Linear Models: Applications and Data 

analysis methods. Thousand Oaks: Sage. 

Skrondal, A., and Rabe-Hesketh, S. 2004. Generalized latent variable modeling: Multilevel, 

longitudinal, and structural equation models. Boca Raton, FL: Chapman and Hall. 

Vermunt, J. K. 1997a. Log-linear models for event histories. Thousand Oaks, CA: Sage. 

 

Vermunt, J. K. 1997b. LEM: A general program for the analysis of categorical 

data: users’ manual (Tech. Rep.). Tilburg, NL: Tilburg University 

 

Vermunt, J.K., Rodrigo, M.F., and Ato-Garcia, M. 2001. “Modeling joint and marginal 

distributions in the analysis of categorical panel data.”  Sociological Methods and Research, 

30: 170-196. 

Whittaker, J. W. 1990. Graphical models in applied multivariate statistics. New York: Wiley.  

 
Wu, C. F. 1983. “On the convergence properties of the EM algorithm.” The Annals of 

Statistics, 11: 95-103. 

 

 


